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the weight to each candidate stencil, which is a nonlinear function of the grid values, is cru-
cial to the success of WENO schemes. For the system case, WENO schemes are based on
local characteristic decompositions and flux splitting to avoid spurious oscillation. But
the cost of computation of nonlinear weights and local characteristic decompositions is
very high. In this paper, we investigate hybrid schemes of WENO schemes with high order
up-wind linear schemes using different discontinuity indicators and explore the possibility
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Troubled-cell indicator in avoiding the local characteristic decompositions and the nonlinear weights for part of
Hyperbolic conservation laws the procedure, hence reducing the cost but still maintaining non-oscillatory properties
Hybrid schemes for problems with strong shocks. The idea is to identify discontinuity by an discontinuity

indicator, then reconstruct numerical flux by WENO approximation in discontinuous
regions and up-wind linear approximation in smooth regions. These indicators are mainly
based on the troubled-cell indicators for discontinuous Galerkin (DG) method which are
listed in the paper by Qiu and Shu (J. Qiu, C.-W. Shu, A comparison of troubled-cell indica-
tors for Runge-Kutta discontinuous Galerkin methods using weighted essentially non-
oscillatory limiters, SIAM Journal of Scientific Computing 27 (2005) 995-1013). The
emphasis of the paper is on comparison of the performance of hybrid scheme using differ-
ent indicators, with an objective of obtaining efficient and reliable indicators to obtain bet-
ter performance of hybrid scheme to save computational cost. Detail numerical studies in
one- and two-dimensional cases are performed, addressing the issues of efficiency (less
CPU time and more accurate numerical solution), non-oscillatory property.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we systematically investigate hybrid schemes of WENO schemes with high order up-wind linear schemes
using different discontinuity indicators for hyperbolic conservation laws:

{ut+V~f(u):O,

u(x,0) = uo(x). (1.1)

These indicators are mainly based on the troubled-cell indicators for discontinuous Galerkin methods which are listed by
Qiu and Shu [18]. The emphasis is on the comparisons of performances of the hybrid WENO schemes using different
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indicators, with an objective of obtaining efficient and reliable indicators to get better performance for the hybrid WENO
schemes to save computational cost.

The first WENO scheme is constructed by Liu et al. [16] for a third-order finite volume version, in which they adopted a
convex combination of the reconstructions on all candidate stencils instead of choosing the smoothest stencil to pick one
interpolating polynomial for the essentially non-oscillatory (ENO) schemes [11], while additionally obtaining one order of
improvement in accuracy. In 1996, the third and fifth-order finite difference WENO schemes in multi space dimensions
are constructed by Jiang and Shu [14], with a general framework for the design of smoothness indicators and nonlinear
weights. Balsara and Shu [2] extended the WENO schemes up to the eleventh order, and Gerolymos et al. [10] further devel-
oped and investigated very high-order WENO schemes up to the seventeenth order. WENO schemes are the important high-
resolution/high-order methods for the numerical solutions of hyperbolic conservation laws. WENO schemes have been quite
successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such
as compressible turbulence simulations [13,17,25] and aeroacoustics [8]. For more details, we refer to lecture notes [22,23]
and the references listed therein.

A key idea in finite difference WENO schemes is a combination of lower order fluxes to obtain a higher order approxima-
tion. The choice of the weight to each candidate stencil, which is a nonlinear function of the grid values, is crucial to the suc-
cess of WENO schemes. For the system case, WENO schemes are based on local characteristic decompositions and flux
splitting to avoid spurious oscillation. But the cost of computation of nonlinear weights and local characteristic decomposi-
tions is very high. There have been a lot of efforts in the literature in order to overcome this drawback. For Euler equations,
Jiang and Shu [14] computed the nonlinear weights from pressure and entropy instead of the characteristic values to simplify
the costly characteristic decomposition procedure. Pirozzoli [17] developed an efficient hybrid compact-WENO scheme,
which relied on a compact up-wind scheme in conservative form to treat smooth regions of the flow field and on a WENO
scheme to handle discontinuities. Hill and Pullin [13] developed a hybrid scheme combining the tuned center-difference
scheme with a WENO scheme which is then constructed for use in the large-eddy simulations of strongly compressible,
shock-driven flows. They expected that the nonlinear weights for WENO schemes would be achieved automatically in re-
gions of smooth flow away from shocks to match those of the tuned center-difference scheme, but in practice a switch
was found to be necessary. Costa et al. [9] proposed a high-order hybrid central-WENO finite difference scheme. They used
high order multi-resolution analysis of Harten [12] to detect the high gradient parts of the solution in order to capture the
shocks with the fifth-order WENO scheme, while the smooth regions are computed with the more efficient and accurate
sixth-order central finite difference scheme. The efforts above attempted mainly to hybridize the WENO scheme and other
schemes. The main idea is to use the WENO scheme to capture discontinuities and to use other efficient schemes in smooth
regions of the solution to save the computational cost.

An important component of the hybrid scheme is an indicator to automatically identify where the discontinuity of the
solution is and the expensive WENO approximation is applied in the discontinuous regions, and an efficient approximation
is applied in the other regions. In this paper, we investigate hybrid schemes of WENO schemes with high order up-wind lin-
ear schemes using different discontinuity indicators and explore the possibility in avoiding the local characteristic decom-
positions and the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory
properties for problems with strong shocks. The idea is to identify discontinuity by an discontinuity indicator, then to recon-
struct numerical flux by WENO approximation in discontinuous regions and by up-wind linear approximation in smooth re-
gions. These indicators are mainly based on the troubled-cell indicators for DG methods, also call limiter, which are listed by
Qiu and Shu [18] . For example, the minmod-based TVB limiter [6,5,4,7] is a slope limiter using a technique borrowed from
the finite volume methodology; the moment-based limiter [1] and an improved moment limiter [3] are designed specifically
for DG method. Recently, a limiter [15] based on a strong superconvergence at the outflow boundary of each element in
smooth regions for the DG method was designed to detect discontinuities for hyperbolic systems of conservation laws. There
are also many other limiters in the finite volume and finite difference literature, such as the monotonicity-preserving (MP)
limiter [24], and modifications of MP limiter [19]. Qiu and Shu compared the performances of the limiters above as troubled-
cell indicators for Runge-Kutta discontinuous Galerkin (RKDG) methods using WENO limiters in [18]. Recently, Zhu and Qiu
used these limiters as troubled-cell indicators for adaptive RKDG methods in [28].

The emphasis of the paper is on comparison of the performance of hybrid scheme using different indicators, with an
objective of obtaining efficient and reliable indicators to obtain better performance of hybrid scheme to save computational
cost. The organization of this paper is as follows: In Section 2, we review the procedure of hybrid WENO schemes with high
order up-wind linear schemes and present description of troubled-cell indicators. Detailed numerical studies in one- and
two-dimensional cases are performed, addressing the issues of efficiency (less CPU time and more accurate numerical solu-
tion), non-oscillatory property in Section 3, and concluding remarks are given in Section 4.

2. Description of hybrid WENO schemes with high order up-wind linear schemes
In this section we give the details of the procedure of hybrid schemes of WENO schemes with high order up-wind linear

schemes. We start with the description in the one-dimensional case. We consider the one-dimensional scalar conservation
laws:
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{uf+f(U)x =0, 2.1)

u(x,0) = ug(x).

For simplicity, we assume that the grid points {x;} are uniform with xj.; — Xj = AX, X;j+12 = Xj + Ax/2 and denote the cells by
I; = [Xj_12, Xj+1,2]. A semidiscrete conservative high-order finite difference scheme of (2.1) is

du: 1 /. R
WO (fan—fiae). 22)

where uj(t) is the numerical approximation to the point value u(x;,t), and the numerical fluxfjﬂ/z approximates hj.q2 = h(Xjs12)
to a high-order accuracy with h(x) implicitly defined as in [14]:

X+Ax/2
flue) = [ oz 23)

AX —Ax/2
To take up-winding into account, we split a general flux into two parts either globally or locally:
f)=fr@w)+f (u), (2.4)
where df*(u)/du > 0 and df (u)/du < 0. For simplicity, we define:

fr(u :—(f ) +ou), f(u :—(f ) — au), (2.5)

where o = max,|f(u)| and the maximum is taken over the whole relevant range of u. This is the global Lax-Friedrichs flux
splitting. The numerical fluxes f7 T and fj L1/2 are relative to f(u) and f(u), respectively and will be reconstructed by either
WENO approximation in the dlscontmuous regions or high order up-wind linear approximation in the smooth regions. The
detail of reconstruction of numerical fluxes fjﬂ 2 will be presented in Section 2.2. Then we have the numerical flux:

fivg =Fap +fiap
and the semidiscrete scheme (2.2), written as an ordinary differential equation (ODE) system:
u; = L(u)

is then discretized in time by a total variation diminishing (TVD) Runge-Kutta method [20,21], for example the third order
version given by

u® = u" + AtL(u")

3 1 1

u® = Zu“ + Zum + ZAIL(U(I)) (2.6)
1 2 2

Ut = Fu" +3u +3AtL( ).

An important component of the hybrid scheme is to automatically identify where the discontinuity of the solution is and
high WENO reconstruction is applied in the discontinuous regions, and efficient reconstruction is applied in the smooth re-
gions. We will use the troubled-cell indicators borrowed from DG methods in [18] to identify the troubled cells, namely the
cells where the discontinuity of the solution is, the description of different troubled-cell indicators will be presented in Sec-
tion 2.3.

2.1. Algorithm of hybrid WENO scheme

The procedure of hybrid 2r + 1 order WENO schemes with 2r + 1 order up-wind linear schemes is then described in the
following:

Step 1. The troubled-cell indicator is applied to identify troubled cell, namely the locations of discontinuity of the numerical
solution, only once at the beginning of the Runge-Kutta time discretization procedure.

Step 2. Reconstruction of the numerical flux based on either the 2r + 1 order WENO approximation in the discontinuous
regions or the 2r+1 order up-wind linear approximation in the smooth regions. The numerical fluxes f“/2 and
f] 12 Will be reconstructed by WENO approximations in the stencils which contain a troubled cell identified in
the Step 1. For example, let I;; to be a troubled cell, then there are 2r+1 stencils {x)0 s -y Xjgarad Jo I = =1, T
which contain a discontinuity, the numerical fluxes f++1+1/2 and f0+, 1,2l =—r,---,r will be reconstructed by
2r+1 order WENO approximation in these stencils. And the numerical fluxes f+1+1/2 and f;;, ,,, will be recon-
structed by 2r+1 order up-wind linear approximation in the stencils which do not contain any troubled cells.
Finally, we obtain the numerical fluxes in (2.2) fj.1/2 :fﬁ1/z +f]-11/2, in which fﬁ]/z,fﬂw are reconstructed by
WENO approximation or up-wind linear approximation.
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2.2. The procedure for the reconstruction of numerical flux

In this subsection, we present the procedure for the reconstruction of numerical flux f; T by WENO approximation and
high order up-wind linear approximation. The basic idea of the WENO approximation is to use a nonlinear convex combi-
nation of low-order polynomial interpolation approximations in order to yield a higher order approximation in smooth re-
gions and use the idea of adaptive stencils to automatically achieve high-order accuracy and non-oscillatory property near
discontinuities.

For the WENO approximation, fﬂ/2 is expressed as [14]

Fip =Y oy f), (2.7)
k=0
where wy is the nonlinear weight, f* = f*(w;),i=j—r,...,j+r, and
qk g07 e 7gr Z ak lgl (28)

are the low-order approximation to f
stant coefficients, see [22] for details.
The nonlinear weight w, in (2.7) satisfies

]+1/2 on the kth stencil Sy = (Xjsk—r, - .., Xjk),k=0,1,...,1, and a},,0 < k,I < r, are con-

r
Wy = 01 Za)k:l7

and is designed to yield (2r + 1) th-order accuracy in smooth regions of the solution. In [14,22] the nonlinear weight wy, is
formulated as

Ok . C;
Oy =———, Wwith ¢y =—-—"—  k=0,1,...,r, 29
YY" (€+ 1)’ Y

where C}, is the linear weight, for r = 1,...,4, see Table 2.1. IS is a smoothness indicator of f(u) on stencil Sy, k=0, 1,...,r, and
¢ is a small constant used here to avoid the denominator becoming zero, we take & =10~ in all test cases in this paper. We
employed the smoothness indicators proposed in [14,22], i.e.,

L[ 20-1, ()52
5= [ o™ g
Xji-1/2
where q,ﬁ” is the Ith-derivative of q(x) and q,(x) is the reconstruction polynomial of f*(u) on stencil Sj such that
1 . .
Ix,/iq"(x)dx:ﬁ+’ i=j+k—r....j+k

For the high order up-wind linear approximation, we use all the r candidate stencils, i.e., S = |J;_,Sk, which contains all
(2r+ 1) grid point values of f*(u), to obtain a 2r + 1 order approximation tofH/2 in smooth regions such that:

21 (x + i ;
= f. 1=]-1,..., r,
Ax/q £ Jj=rj+,
and
2r+1
]+1/2 - qu (] rocc j:r) Zb -1 (210)
where b;,0 < I < 2r are constant coefficients, for details, we refer to [22]. By simple algebra operation, we get:
£ 2r+1
f+1/2 - qu (] r ]+r> chqk< j+k—r> fjik)v (211)
Table 2.1
Optimal weights Cj.
C k=0 k=1 k=2 k=3 k=4
r=1 13 2/3
r=2 1/10 6/10 3/10
r=13 1/35 12/35 18/35 4/35
r=4 1/126 20/126 60/126 40/126 5/126
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where the coefficient C}, here is the linear weight in (2.9), and in smooth regions wy = C; + O((Ax)"),k =0,1,...,r. Thus C,
bear the name of optimal weights.

The procedure for the reconstruction of fj; ) is a mirror symmetry to that of Ajjl /2 With respect to .12, we will not present
it here to save space.

Remark 1. For the system cases, in order to achieve better qualities at the price of more complicated computations, the
WENO approximation is always used with a local characteristic field decomposition, see e.g. [22] for details, while the up-
wind linear approximation is used component by component. For two-dimensional cases, the reconstruction of fluxes is
based on dimension by dimension.

2.3. Description of the troubled-cell indicators

In this subsection we review a few troubled-cell indicators which mainly are based on DG method [18,28] to identify dis-
continuity of the numerical solution. And troubled-cell indicators based on the variation of the solution and multi-resolution
analysis are also presented.

For convenience of presentation of the troubled-cell indicators, we construct a quadratic polynomial on cell I; at time step
t,, denoted by P,(x):

_ 0 X=X o [(X—Xpy? 1 . .
Py(x) =u;” +u Ax Y [( Ax) 1 X E X172, Xja1p2],

such that:
PZ(xk):u27 k:j_17 J7]+17

we have:

(0> — n :!2 n n (1) — n n (2) n :! n n
uj 7—2 I(uj 1+ uj +u} 1)7 uj 7—2 (u} l—uj 1), uj 7—2<uj 1~ uj +uj 1>.

Now we describe different troubled-cell indicators in detail:

1. Troubled-cell indicator based on the average total variation of the solution. (ATV, we will use the same abbreviation as
in [18,28] for each indicator). Let TV denote the total variation of the solution at time step ¢,

V=TV(u") =)

J
If [u? , —u?| > 0, we declare that in cell [x;, X;11] the solution has a discontinuity, and cells [; and I;1; are identified as trou-
bled cells. Here N is the number of cells. 0 < 0 < 1 a constant, is the ATV parameter. The choice of 0 depends on the solution. It
is common in the literature to look at the variation of the solution in order to indicate the presence of discontinuities at a
particular location [17,9]. Moreover this simple definition of the discontinuity guarantees that both shock waves and contact
discontinuities are properly identified. But it is difficult to choose 0 accurately, for 0 is problem-dependent. If 0 is chosen too
small, this will increase computational cost unnecessarily; however if 0 is chosen too large, spurious oscillations will appear.
2. The minmod-based TVB limiter [6] (TVB). Let:

n n
ul, —ul.

= Pa(x02) — ", U= —Pa(12) +u”.

These are modified by the modified minmod function:

™ — (1% . u® ).
= (mod) (0) 0) ,,(0) (0) (2'12)
= (mod) =~ (F
u; _m(u,,uj“—uj U —uj_]>
where m is given by
_ a if |a;] < M(Ax)?
m(ar,ay,....ap) =14 ol < M(AX)", (2.13)
m(ay,ay,...,a,) otherwise,
and the minmod function m is given by
s- min |g| if sign(a;)=sign(a,) =---=sign(a,) =s,
m(a,ds,...,a) = I<j<n (2.14)
0 otherwise.

The TVB limiter parameter M > 0 is a constant.
If 4™ = i or 4™ + u;, we declare the cell ; as a troubled cell.
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Unfortunately, the TVB limiter parameter M is also dependent on the problem. There is no automatic switch which works
well for various situations. For scalar problems it is possible to estimate M by the initial condition as in [6] (M is proportional
to the second derivative of the initial data at smooth extrema), however it is difficulty to estimate M for system of equations.
If M is chosen too small, more cells containing discontinuities will be identified than necessary, therefore increasing compu-
tational cost; however if M is chosen too large, spurious oscillations will appear.

3. The strong troubled-cell indicator of Xu and Shu [27] (XS). We define ¢; as

B
B+

¥ =
where

o o)’ Unnax — Umin)*
o = (U —ul )" +& f= (Tjﬁﬁ) gy = (o~ tn). % mn)”
here ¢ is a positive constant which is introduced to avoid the denominator becoming zero (we will take ¢ =10 here).
Umax, Umin aré maximum and minimum values of u] for all grid points at time step t,. It is clear that 0 < ¢; < 1 and @; = O(Ax?)
in smooth regions. When near a strong discontinuity, y; < f8;, ¢; is close to 1. In this paper, we identify the cells I; and [;;; as
troubled cells when ;> (Ax).
4. The monotonicity-preserving limiter [24] (MP). We define:

median(x,y,z) = x + m(y — x,z — x), (2.15)
where m is the minmod function in (2.14). If:
7 med1an< e u“}“, uj’i?‘), (2.16)
where
uTh = max [min (uJ((’), u?, uﬂD> min (u“”, 7l )]

Max _ i 0) ,,(0) ., MD (0) LC
w3 = min [max (uj STRRTI ) max (uj ,uﬁhuj+ )]

and

dj =u® —2u® +u,
d"Y = m(4d; — dj.1,4d;.1 — dj, dj, djr, dj 1, dj ),

s

1
u’."’?:2< +ul? —dj"ﬁ‘fx), upfu +oc< ‘”-u@]),

i+ J
wc_ .o, 170 o B max
Uy =14 *5(“1 *”j—l) +30

or if u].tl satisfies a similar (symmetric) condition, the cell J; is identified as a troubled cell. We take the parameters o = 2 and
2

B =4 as suggested in [24] in the numerical tests.
5. Multi-resolution analysis of Harten [12] (MR). Given the point values {uj}g of function u(x). Let 1; denote the approx-
imation to u; which is obtained from the unique polynomial ii(x) of degree one that interpolates u(x) at x;_1, Xj+1,

- 1
oy = () =5 (U1 + ),
and let d; denote the corresponding approximation error:

dj =U; — Uj.

If u(x) at x = X has p — 1 continuous derivatives and a jump discontinuity in its p-th derivative as denoted by [-], then for x;
near X:

PryP) <
d}-%{(m) W), p < (2.17)
AX p >

In this paper, if |dj| > emrAX, the cell I is identified as a troubled cell, here &y is a multi-resolution parameter.
6. Moment limiter of Biswas, Devine, and Flaherty [1] (BDF).

I),mod ) -1 1-1) 1-1) -1
ulh e = (217]) m(l- Dy, ulV - —u ) 1=1,2, (2.18)
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where m is again the minmod function in (2.14). For our purpose, if the BDF limiter (2.18) returns other than the first argu-

ment for the highest order case I = 2, the cell J; is identified as a troubled cell.
7. A modification of the moment limiter by Burbeau et al. [3] (BSB). If both (2.18) and

~(l)mod 1 _ O -+ (-1 (-1) o (-1)- .
; 7—(21_1)m((21 Dy; ,uH% u Uj,% >, 1=1,2,

where

(I=-1)+ _ ,(-1) 0] (-1)- _ ,(-1) 0}
Uy = Uy = 2=y, Uy =l + (21 -1y,

are enacted for the highest order moment uJ@, then the cell J; is identified as a troubled cell.
8. A modification of the MP limiter [19] (MMP). We let:

¢ = min(1, AU™" /Apinlt),
where

) 1,00 ,,(0) 1 — 140 ; -
LU U ), Am.nufuj —mm(uj+ uH%).

_Ls
2

E - ATV g0 E —5— ATV
0.25 F —4A—— TVB-1 E —A—— TVB-1
F ———— TVB-2 60 F ——7—— TVB-2
02 ——pH— XS F —pH— XS
s —<— MP 404 —<— MP
F —<— MR Ny —<— MR
015 = BDF
L ——+—— BSB
F —s+—— MMP
I —»%—— KXRCF (]
01 o
= 3 o]
5 i S
£ ®
w I e
L o
[-%
0.05
] M | R | P MR RS R R}
10°® 10" 10° 0 1 2 3
CPU time
Fig. 3.1. Lax problem by the 3rd-order scheme. CPU-L;-error (left) and cell-percentage (right).
02 100 =
E 80 F
015 | 60
o1 f
3 [
L g
.
5 S
£ 005 [ o
i o
L [
o

TR R | Ll IR )

10" 10°
CPU time

Fig. 3.2. Lax problem by the 5th-order scheme. CPU-L-error (left) and cell-percentage (right).

(2.19)

(2.20)
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02 100
o 80 F —+H—— ATV
0.15 F —4A— TVB-1
[ 60 ——7— TVB-2
r F —H— XS
- wE S MP
0.1 r i ~ —<&— MR
I 20
50.05 [~
5 5 E +
i 5 o
[
| (%
M | M | L
10" 10° 0
CPU time
Fig. 3.3. Lax problem by the 7th-order scheme. CPU-L,-error (left) and cell-percentage (right).
0.18
012 |
0.06 [~ [)
g
. |
5 £
£ ]
[} 5 <
[
[-%
Ll MR Y T TR R R B
10" 10° 10' 0 1 2 3 4
CPU time n
Fig. 3.4. Lax problem by the 9th-order scheme. CPU-L;-error (left) and cell-percentage (right).
Table 3.2

Lax problem. The total CPU time of N=100 x 2" (n=0,1,...,4) cells, and the ratios of the total CPU time by the 3rd, 5th, 7th and 9th-order hybrid WENO
schemes over that of the same order pure WENO scheme.

Scheme or indicators Third-order scheme Fifth-order scheme Seventh-order scheme Ninth-order scheme
CPU Ratio CPU Ratio CPU Ratio CPU Ratio
WENO 14.61648 1.00 28.02074 1.00 73.82454 1.00 109.61222 1.00
ATV 3.30550 0.23 4.09538 0.15 6.452025 0.09 8.29474 0.08
TVB-1 5.35019 0.37 8.23175 0.29 22.19463 0.30 30.50436 0.28
TVB-2 3.26950 0.22 415637 0.15 6.99494 0.09 9.09462 0.08
XS 3.37549 0.23 4.19936 0.15 6.73500 0.09 8.31474 0.08
MP 4.50732 0.31 6.55900 0.23 16.07656 0.21 26.33300 0.24
MR 3.19452 0.22 4.04021 0.14 6.26320 0.08 8.00743 0.07
BDF 496425 0.33 6.98994 0.25 17.93128 0.24 24.42929 0.22
BSB 5.00424 0.34 7.10492 0.25 17.92528 0.24 24.49628 0.22
MMP 4.00739 0.27 5.35819 0.19 12.82105 0.17 20.95981 0.19

KXRCF 3.66244 0.25 4.43233 0.16 6.89395 0.09 8.79466 0.08
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Fig. 3.5. Lax problem by the 5th-order scheme with different indicators, 200 cells, t = 1.3. Density and time history of reconstruction of fluxes by WENO

approximation.
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Fig. 3.6. The shock density wave interaction problem by the 3rd-order scheme. CPU-L-error (left) and cell-percentage (right).
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When ¢ # 1, the limiter enacts, the cell J; is identified as a troubled cell.
9. A shock-detection technique by Krivodonova et al. [15] (KXRCF). Partition the boundary of a cell J; into two portions I,
and aI;", where the flow is into (7 - i < 0,7 is the normal vector to dl;) and out of (7 - fi > 0)I;, respectively. The cell I; is
identified as a troubled cell, if:

| ol =, )ds|
B >
By Joty |, |

1, (2.21)

here h; is the radius of the circumscribed circle in the element I;. I, is the neighbor of I; on the side of dI; and the norm is
based on an element average in one-dimensional case.

Remark 2. From the above list of the indicators, we observe that ATV, TVB, XS, MP and MR indicators are dependent on
parameters, while the remaining indicators, i.e., BDF, BSB, MMP and KXRCF indicators are free of parameters. The parame-
ter-free indicator is desirable for general hyperbolic conservation laws. We use the solution u itself as indicator variable for
the one-dimensional scalar problems. For system of equations of gas dynamics, i.e., the one- and two-dimensional Euler
equations are considered, we use the entropy as indicator variable. For the two-dimensional Euler equations, the trou-
bled-cell indicators work in x- and y-direction, respectively, to identify the troubled cells.

Remark 3. For the indicators except ATV are depended only the cell and its two neighbor cells and the reconstruction of
numerical flux is depended on the cell and its 2r neighbor cells, these local properties guarantee that this hybrid approach
is a high parallel method.
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Fig. 3.9. The shock density wave interaction problem by the 9th-order scheme. CPU-L;-error (left) and cell-percentage (right).

Table 3.3
Shock density wave interaction problem. The total CPU time of N =100 x 2" (n=0,1,...,4) cells, and the ratios of the total CPU time by the 3rd, 5th, 7th and 9th-
order hybrid WENO schemes over that of the same order pure WENO scheme.

Scheme or indicators Third-order scheme Fifth-order scheme Seventh-order scheme Ninth-order scheme
CPU Ratio CPU Ratio CPU Ratio CPU Ratio
WENO 19.16309 1.00 37.69527 1.00 99.80983 1.00 142.95627 1.00
ATV 4.01739 0.21 4.99924 0.13 7.75382 0.08 10.35942 0.07
TVB-1 6.62199 0.35 12.25314 0.33 27.02989 0.27 41.94762 0.29
TVB-2 445732 0.23 5.61315 0.15 12.67507 0.13 11.12931 0.08
XS 440133 0.23 6.26605 0.17 11.01133 0.11 14.15385 0.10
MP 5.09523 0.27 6.34004 0.17 12.35912 0.12 20.01796 0.14
MR 442233 0.23 6.48601 0.17 11.58724 0.12 15.88159 0.11
BDF 433534 0.23 6.40003 0.17 11.04232 0.11 15.27768 0.11
BSB 4.49732 0.23 6.69298 0.18 11.04132 0.11 14.81975 0.10
MMP 4.86926 0.25 6.06808 0.16 9.89050 0.10 14.06386 0.10

KXRCF 4.49132 0.23 5.63314 0.15 9.17560 0.09 11.97018 0.08
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3. Numerical results

In this section we perform extensive numerical experiments on one- and two-dimensional Euler equations to compare
the performances of hybrid WENO schemes using the troubled-cell indicators outlined in the previous section. Comparisons
are concentrated mainly on the CPU time, the L-error, and the percentage of reconstruction of fluxes by WENO approxima-
tion. For the blast wave problem, the ATV parameter 0 is taken as 0.1; for other problems it is taken 0 as 0.7. The notations
TVB-1, TVB-2 and TVB-3 refer to the minmod-based TVB indicator with the TVB parameters M = 0.01, M= 10 and M = 100,
respectively. The multi-resolution parameter &y is taken as 0.25 for the blast wave problem, and 0.5 for the remaining prob-
lems. In all the numerical tests of this paper, the third order Runge-Kutta method is used for time discretization, and the CFL
number is taken as 0.6.

3.1. One-dimensional case

In this subsection, we consider the one-dimensional Euler equations of gas dynamics with three different initial condi-
tions. The PDEs are

p pv
pv| + | pr+p| =0,
E |, v(E+D)],

here p is the density, v is the velocity, E is the total energy, p is the pressure, which is related to the total energy by
E=:E+1pv? withy=14.
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Fig. 3.14. The blast wave problem by the 9th-order scheme. CPU-L,-error (left) and cell-percentage (right).

Table 3.4
Blast wave problem. The total CPU time of N =100 x 2" (n=0,1,...,4) cells, and the ratios of the total CPU time by the 3rd, 5th, 7th and 9th order hybrid WENO
schemes over that of the same order pure WENO scheme.

Scheme or indicators

Third-order scheme

Fifth-order scheme

Seventh-order scheme

Ninth-order scheme

CPU Ratio CPU Ratio CPU Ratio CPU Ratio
WENO 36.96038 1.00 72.70895 1.00 265.38466 1.00 453.34208 1.00
ATV 11.55224 0.31 16.81544 0.23 43.38540 0.16 76.12243 0.17
TVB-1 18.07225 047 36.31648 0.50 103.73023 039 253.44817 0.56
TVB-3 13.37497 0.36 19.18508 0.26 29.62150 0.11 81.78057 0.18
XS 14.20984 0.38 20.26292 0.28 4472219 0.17 58.79406 0.13
MP 17.24138 047 21.40975 0.29 66.47590 0.25 105.09502 0.23
MR 14.49980 0.39 18.36121 0.25 54.03979 0.20 73.18987 0.16
BDF 13.33597 0.36 20.53588 0.28 40.61683 0.15 57.86320 0.13
BSB 13.33297 0.36 20.84783 0.29 40.54884 0.15 65.44105 0.14
MMP 18.32022 0.50 23.36245 0.32 76.09943 0.28 76.58036 0.17
KXRCF 11.81121 0.32 16.20354 0.22 43.70336 0.16 86.93278 0.19




Example 4.1. The Lax problem. The initial condition is

(0.445,0.698,3.528)
(0.5,0,0.571)

(0.0.0) = {
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if x <0,
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Fig. 3.15. Blast wave problem by the 3rd-order scheme with different indicators, 400 cells, t = 0.038. Density and time history of reconstruction of fluxes by

WENO approximation.
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The computational domain is [-5,5], and we compute this problem till t=1.3.
We first compare the performances of hybrid WENO schemes with different troubled-cell indicators. We compute the L;-
error of density, CPU time and the percentage of reconstruction of fluxes by WENO approximation of all indicators using

Density

Density

Density

Density

Density

-~ o002

(i) MMP

Density

Density

Density

Density

Density

« 002

(j) KXRCF

Fig. 3.16. Blast wave problem by the 5th-order scheme with different indicators, 400 cells, t = 0.038. Density and time history of reconstruction of fluxes by
WENO approximation.
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100 x 2" (n=0,...,4) uniform cells and show CPU-L;-error curves and cell-percentage curves in Figs. 3.1-3.4. CPU time com-
parison among pure and hybrid WENO schemes is given in Table 3.2.
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Fig. 3.17. Blast wave problem by the 7th-order scheme with different indicators, 400 cells, t = 0.038. Density and time history of reconstruction of fluxes by
WENO approximation.
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Fig. 3.18. Blast wave problem by the 9th-order scheme with different indicators, 400 cells, t = 0.038. Density and time history of reconstruction of fluxes by
WENO approximation.
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All comparisons above suggest that for Lax problem, the winners in terms of less CPU time, smaller percentage of recon-
struction of fluxes by WENO approximation and more accurate numerical solutions, are ATV, TVB-2, MR and KXRCF indica-
tors. We can observe that the percentages of reconstruction of fluxes by WENO approximation decrease with mesh
refinement in almost cases, which is a very desirable property for troubled-cell indicators. Hybrid WENO schemes can save
more CPU time than pure WENO schemes, and this property is more obvious with mesh refinement.

For all the indicators, we show the computed density p at t = 1.3 against the exact solution and time history of reconstruc-
tion of fluxes by WENO approximation with N = 200 uniform cells in Fig. 3.5 by the 5th-order scheme. In the density figure,
the solid line is the exact solution and “[0” represents the numerical solution. In the time history figure, each “0” represents
the reconstruction of flux by WENO approximation. We can also observe that the numerical results for all cases keep sharp
transition and are mostly oscillation-free. In order to save space, in this paper we do not show the results by the 3rd-, 7th-
and 9th-order schemes which are similar to those by the 5th-order scheme.

Example 4.2. The shock density wave interaction problem. The solution of this problem contains both shocks and complex
smooth regions. The initial condition is

(3.857143,2.629369,10.333333) if x < —4,

. U’p):{(1+0.25in(5x),0,1) ifx > 4.

The computational domain is [—-5,5], and we compute this problem till t=1.8.

Again we show CPU-L;-error and cell-percentage curves of all indicators using 100 x 2" (n=0,...,4) uniform cells in Figs.
3.6-3.9. CPU time comparison among pure and hybrid WENO schemes for this problem is given in Table 3.3.

Table 3.3 suggests that hybrid WENO schemes can save more CPU time than pure WENO schemes. From Figs. 3.6-3.9 and
Table 3.3, we observe that for the shock density wave interaction problem, ATV, TVB-2, MR and KXRCF indicators are better
than others, for they result in less CPU time, smaller percentages of reconstruction of fluxes by WENO approximation and
more accurate numerical solutions.

For all the indicators, we present the computed density p against the reference “exact” solution and time history of recon-
struction of fluxes by WENO approximation with 200 uniform cells in Fig. 3.10 by the 5th-order scheme. The reference “ex-
act” solution is computed by the 5th-order finite difference WENO scheme [14] with 6400 grid points. Again, in order to save
space, in this paper we do not show the results by the 3rd-, 7th- and 9th-order methods which are similar to those by the
5th-order scheme.

Example 4.3. The blast wave problem. This problem involves interaction of blast waves and its initial condition is given by

(1,0,1000) if 0 < x < 0.1,
(p,v.p) =4 (1,0,0.01) if 0.1 < x<0.9,
(1,0,100) if09 < x < 1.

A reflective boundary condition is applied at both ends, see [11,26] for details. The computational domain is [0, 1], and we
compute the solution up to t =0.038.

Analogously we show CPU-L;-error and cell-percentage curves of all indicators using 100 x 2" (n=0,...,4) uniform cells
in Figs. 3.11-3.14. We present the comparison on CPU time among pure and hybrid WENO schemes in Table 3.4.

Table 3.5
Double mach reflection problem. Comparison on CPU time and percentage of reconstruction of fluxes by WENO approximation
among pure WENO and hybrid WENO schemes.

Ny x Ny, Scheme or indicators Third-order scheme Fifth-order scheme
CPU Percent CPU Percent
480 x 120 WENO 529.05 100.00 723.59 100.00
ATV 118.43 8.59 129.53 9.96
TVB-3 103.30 4.80 127.77 7.47
MR 103.58 7.99 124.92 8.42
KXRCF 114.24 5.31 145.54 6.33
960 x 240 WENO 5928.03 100.00 9374.70 100.00
ATV 1145.37 6.99 1433.27 7.44
TVB-3 1050.23 3.55 1379.08 5.96
MR 1064.82 538 1256.15 5.78
KXRCF 1312.24 3.61 1505.23 4.39
1920 x 480 WENO 40262.41 100.00 62511.25 100.00
ATV 10530.14 5.61 11384.43 6.03
TVB-3 8150.48 2.72 11048.70 5.29
MR 7759.46 3.56 9536.02 3.88

KXRCF 8817.95 2.30 11257.59 3.24
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Figs. 3.11-3.14 and Table 3.4 indicate that for the blast wave problem, ATV, TVB-3 and KXRCF indicators are better than
other indicators, for they are more efficient and more accurate than others. Table 3.4 suggests that hybrid WENO schemes is
more efficient than pure WENO schemes.

X

Fig. 3.19. Double Mach reflection problem by the 5th-order scheme with 1920 x 480 cells, t = 0.2. Thirty equally spaced density contours from 1.5 to 22.7.
From top to bottom: ATV, TVB-3, MR and KXRCF.
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Fig. 3.20. Double Mach reflection problem by the 5th-order scheme with 1920 x 480 cells, t = 0.2. Reconstructions of fluxes by WENO approximation at the
last time step. From top to bottom: ATV, TVB-3, MR and KXRCF.

In Figs. 3.15-3.18, we present the computed density p and time history of reconstruction of fluxes by WENO approxima-
tion with all the indicators with 400 uniform cells by the 3rd-, 5th-, 7th- and 9th-order schemes. The reference “exact” solu-
tion is also computed by the 5th-order finite difference WENO scheme [14] using 6400 grid points.
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3.2. Two-dimensional case
In the one-dimensional cases, the performances of ATV, TVB (when the TVB parameter M is chosen suitably), MR and

KXRCF indicators are better than others. Now, we consider hybrid WENO schemes with the above indicators for the two-
dimensional Euler equations of gas dynamics with two different initial conditions. The PDEs are

p pu pv

pu N pu? +p puv B
pv puv pv*+p| 7
El, LluE+pl, LvE+p)],

here p is the density, (u,v) is the velocity, E is the total energy, p is the pressure, which is related to the total energy by
E=:2+3pu® +v%) with y=1.4.

Example 4.4. Double Mach reflection. This problem is originally from [26]. The computational domain for this problem is
[0,4] x [0,1]. The reflecting wall lies at the bottom, starting from x = L. Initially a right-moving Mach 10 shock is positioned
atx =L,y = 0 and makes a 60° angle with the x-axis. For the bottom boundary, the exact post-shock condition is imposed for
the part from x = 0 to x = | and a reflective boundary condition is used for the rest. At the top boundary, the flow values are
set to describe the exact motion of a Mach 10 shock. We compute the solution up to t =0.2.

In Table 3.5 we document the CPU time and the percentages of reconstruction of fluxes by WENO approximation by the
3rd- and 5th-order schemes with the ATV, TVB-3, MR and KXRCF indicators. We can see that the hybrid WENO schemes cost
about one fifth and one sixth CPU time of pure WENO scheme for the 3rd-order and the 5th-order schemes, respectively. We
also see that the percentages of reconstruction of fluxes by WENO approximation for hybrid WENO methods is less than 10
for both by the 3rd- and the 5th-order schemes with the TVB-3, MR and KXRCF indicators, and the smaller percentage of
reconstruction of fluxes by WENO approximation with the finer meshes as we expect. To save space, we only show the
numerical results on the most refined mesh with 1920 x 480 uniform cells by the 5th-order scheme with ATV, TVB-3, MR
and KXRCF indicators in Fig. 3.19. All the figures are showing 30 equally spaced density contours from 1.5 to 22.7.
Reconstructions of fluxes by WENO approximation at the last time step with the ATV, TVB-3, MR and KXRCF indicators are
shown in Fig. 3.20.

Example 4.5. A Mach 3 wind tunnel with a step. This model problem is also originally from [26]. The setup of the problem is
as follows. The wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units high and is located 0.6
length units from the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow. Reflective bound-
ary conditions are applied along the wall of the tunnel and in/out flow boundary conditions are applied at the entrance/exit.
The corner of the step is a singular point and we treat it the same way as in [26], which is based on the assumption of a nearly
steady flow in the region near the corner. We compute the solution up to t=4.

In Table 3.6 we document the CPU time and the percentages of reconstruction of fluxes by WENO approximation by the
3rd- and the 5th-order schemes with the ATV, TVB-3, MR and KXRCFR indicators. We again can see that the hybrid WENO
schemes cost about one third and one fourth (except KXRCF, which is about one third ) CPU time of pure WENO scheme for

Table 3.6
Forward step problem. Comparison on CPU time and percentage of reconstruction of fluxes by WENO approximation among pure WENO and hybrid WENO
schemes.

Ny x Ny, Scheme or indicators Third-order scheme Fifth-order scheme
CPU Percent CPU Percent
240 x 80 WENO 304.27 100.00 422.07 100.00
ATV 159.21 20.63 178.97 21.10
TVB-3 111.90 8.01 149.92 10.35
MR 122.26 16.46 136.45 13.72
KXRCF 147.74 18.27 182.11 19.90
480 x 160 WENO 2708.42 100.00 343747 100.00
ATV 907.25 11.36 1228.32 12.05
TVB-3 926.42 6.60 1070.11 7.76
MR 891.61 11.05 998.60 9.79
KXRCF 1040.93 13.15 1234.79 13.95
960 x 320 WENO 22960.60 100.00 29965.77 100.00
ATV 7497.02 5.81 7816.95 6.54
TVB-3 7989.90 4.46 8356.79 6.53
MR 7098.19 6.51 7689.53 6.33

KXRCF 7579.88 8.58 9172.84 9.87
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the 3rd-order and the 5th-order schemes, respectively. We also see that the percentage of numerical fluxes using the WENO
approximation for hybrid WENO methods is less than 20 for both by the 3rd- and the 5th-order schemes with the ATV, TVB-
3, MR and KXRCF indicators, and the smaller percentage of reconstruction of fluxes by WENO approximation with the finer
meshes as we expect. To save space, we only show the numerical results on the most refined mesh with 960 x 320 uniform
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Fig. 3.21. Forward step problem by the 5th-order scheme with 960 x 320 cells, t = 4. Thirty equally spaced density contours from 0.32 to 6.15. From top to
bottom: ATV, TVB-3, MR and KXRCF.
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cells by the 5th-order scheme with the ATV, TVB-3, MR and KXRCF indicators in Fig. 3.21. All the figures are showing 30
equally spaced density contours form 0.32 to 6.15. Reconstructions of fluxes by WENO approximation at the last time step
with the ATV, TVB-3, MR and KXRCF indicators are shown in Fig. 3.22.

W,
- el
oy

.
Py = BRI L I 0

L S B

Fig. 3.22. Forward step problem by the 5th-order scheme with 960 x 320 cells, t = 4. Reconstructions of fluxes by WENO approximation at the last time
step. From top to bottom: ATV, TVB-3, MR and KXRCF.
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4. Concluding remarks

In this paper, we have systematically investigated and compared a few different troubled-cell indicators for the hybrid
WENO finite difference schemes. Extensive one-dimensional simulations on the hyperbolic systems of Euler equations indi-
cate that the ATV, TVB (when the TVB parameter M is chosen suitably), MR and KXRCF indicators are better than other indi-
cators. We also apply hybrid WENO schemes with these “best” indicators for the two-dimensional Euler equations, the
numerical results again indicate that hybrid WENO schemes are more efficient than WENO schemes. The hybrid WENO
scheme with these “best” indicators is efficient and reliable, which saves computational cost and obtain non spurious oscil-
latory numerical solutions. This approach can also be applied to the hybrid WENO finite volume schemes, and the research
on the hybrid WENO finite volume schemes with indicators and the implementation of the method for structured curved
meshes and three-dimensional problems are ongoing.
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